Consultancy – Paper Industry

Stability Improvements

In

Clay Slurry Prepⁿ Process

Clay Slurry Prepⁿ – pH control

	T	ag Name	EQU	Description	Ruter	Delay	Pilter	Current	Mark	Symbol
134Fi825			L/5	FILLER FLOW TO STATIC MIXER	5.591643E-03	0	0	5.242382E-03		
134L828			PCT	LEVEL OF FILLER REACTION TANK	82.83049	0	0	87.18623		0
134FC827			LIS	WATER FLOW TO FILLER STATIC MIXER	2.976378E-02	0	0	2.189868E-03	-	V
134QC846			PH	PH OF FILLER CLAY	4.598499	0	0	4.638361		Å
134LC834			PCT	LEVEL OF FILLER SCREENING TANK	70.90332	0	0	70.8896	-	
134LC834-op			PCT	LEVEL OF FILLER SCREENING TANK	22.18979	0	0	0		
Time Base No of Pointa		Selection Criteria				Ruter Time				
1MIN 1000							25/03/20	03 12:45	:63	
UР	UP	UP						UP	UP	UP
72.0	2.5	3.8						104	5.0	100.0
72.0	2.8	3.0						100	5.0	100
rie.	20	24				/				
-		-						180	-4.11	-80
			-11 .		Con 2000 - 1000					
712	15	10 11	M A		1/1/1	111	-	44	1.0	40
	1993	21	1							- DW
		1	11		11 11	r 11				
70.8	1.0-	12- 1	KA	rd h d d	A A	AL		140		47
70.8	1.0-	12-	KA		ΥΛΛ	A		40	4.4	-40
70.8	1.0	12-	Λſ	(AAAA)	$\Lambda \Lambda$	A		40	4.4	-45.
70.8-	10-		Ŵſ	MM	Λ	\square		40	4.4	-43
70.4	1.0- 0.5-		\bigwedge	MM	Ŵ	\int		-40 -20	4.4	-45
70.8-	1.D- D.S-		Ŵ	MM				-40 -20	4.4	-45
70.8	1.0- 0.5- 0.0		Ŵ	MM		\mathcal{A}		-40 -20	4.4	-40.
70.8	1.0- 0.5- 0.0-	42 00 25/03/2009 07	00 25i00	09k00 10.00 11.00	12.00 13.00	14	00	-40 -20 10.00	4.4	-40 -20 _0
70.8	1.0- 0.9- 0.0	42- 00- 25/03/2009 07	100 25/02	09/00 10:00 11:00	12:00 13:00	140	00	-40 -20 10.00 0	4.4	-10 -20 [0
70.8- 70.0 70.0 70.0	1.0- 0.5- 0.0 0.0 0.0	12- 00- 25/09/2009 07 0.0 Down	00 2500	09:00 10:00 11:00 << < Zoon in Zoo	12.00 13.00	740	DQ	-40 -20 -20 -0 10.00 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	4.2 4.0 0 4.0 n Down	-40 -20 0 0 0 0 0 0 0 0 0 0

Titration Model (pH calculation)

$$Q_{RT} * C_{RT} = Q_{H_2SO_4} * C_{H_2SO_4} + Q_{DS} * C_{DS} \quad (neglecting RT mixing lag effect)$$

$$C_{RT} = \frac{Q_{H_2SO_4} * C_{H_2SO_4} + Q_{DS} * C_{DS}}{Q_{RT}}$$
but $Q_{RT} \approx Q$

$$C_{RT} = \frac{Q_{H_2SO_4} * C_{H_2SO_4}}{Q_{DS}} + C_{DS}$$

or
$$C_{RT} = \frac{1}{(1+\tau S)} * \left(\frac{Q_{H_2SO_4} * C_{H_2SO_4}}{Q_{DS}} + C_{DS} \right) (with RT mixing lag effect)$$

where
$$\tau = \frac{Volume \ of \ RT \ contents \ (t) * RT \ Mixing \ Efficiency}{}$$

Where:

RT = *Reaction Tank*

 $Q_{RT} = RT \ Effluent \ Volumetric \ Flow (m³/s)$

 C_{RT} = Ion Concentration of RT Effluent Flow (#/m³)

Superior Contro

 $Q_{H_2SO_4} = H_2SO_4$ Volumetric Flow (m³/s)

$$C_{H_2SO_4} = Ion \ Concentration \ of \ H_2SO_4 \ (\#/m^3)$$

$$Q_{DS}$$
 = Dilute Slurry Volumetric Flow (m³/s)

$$C_{DS}$$
 = Ion Concentration of Dilute Slurry (#/m³)

$$\tau$$
 = First Order RT Mixing Lag

$$pH = RT Effluent pH$$

pH Control Evaluation

Modelled Controller Features

- Ideal PID Controller Structure
- Logic to inhibit controller during RT empty cycle
- Logic to switch between PID & 'bang-bang' controllers
- Current (dilution water) valve requires ~2% open operating point! (for PID controller)

Validation of Model pH Dynamic Data

Plant data over a 9 hour period

Model data over a 9 hour period

0

• Key Issues:

□ H₂SO₄ flow <u>must be stopped</u> during RT empty cycle Iogic from RT level limit switches to close/open valve pH control <u>must be suspended</u> during RT empty cycle the integral action <u>must be suspended</u> (for empty cycle) □ (Current) oversized H₂SO₄ valve <u>must be changed</u> \succ select value in (max. C_v) range of 3 to 6 Start-up PID parameters (from model) must be used

pH Control Comparison

